skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lew, Matthew_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The past decade has brought many innovations in optical design for 3D super-resolution imaging of point-like emitters, but these methods often focus on single-emitter localization precision as a performance metric. Here, we propose a simple heuristic for designing a point spread function (PSF) that allows for precise measurement of the distance between two emitters. We discover that there are two types of PSFs that achieve high performance for resolving emitters in 3D, as quantified by the Cramér-Rao bounds for estimating the separation between two closely spaced emitters. One PSF is very similar to the existing Tetrapod PSFs; the other is a rotating single-spot PSF, which we call the crescent PSF. The latter exhibits excellent performance for localizing single emitters throughout a 1-µm focal volume (localization precisions of 7.3 nm inx, 7.7 nm iny, and 18.3 nm inzusing 1000 detected photons), and it distinguishes between one and two closely spaced emitters with superior accuracy (25-53% lower error rates than the best-performing Tetrapod PSF, averaged throughout a 1-µm focal volume). Our study provides additional insights into optimal strategies for encoding 3D spatial information into optical PSFs. 
    more » « less
  2. Dipole-spread function (DSF) engineering reshapes the images of a microscope to maximize the sensitivity of measuring the 3D orientations of dipole-like emitters. However, severe Poisson shot noise, overlapping images, and simultaneously fitting high-dimensional information–both orientation and position–greatly complicates image analysis in single-molecule orientation-localization microscopy (SMOLM). Here, we report a deep-learning based estimator, termed Deep-SMOLM, that achieves superior 3D orientation and 2D position measurement precision within 3% of the theoretical limit (3.8° orientation, 0.32 sr wobble angle, and 8.5 nm lateral position using 1000 detected photons). Deep-SMOLM also demonstrates state-of-art estimation performance on overlapping images of emitters, e.g., a 0.95 Jaccard index for emitters separated by 139 nm, corresponding to a 43% image overlap. Deep-SMOLM accurately and precisely reconstructs 5D information of both simulated biological fibers and experimental amyloid fibrils from images containing highly overlapped DSFs at a speed ~10 times faster than iterative estimators. 
    more » « less
  3. Interactions between biomolecules are characterized by where they occur and how they are organized, e.g., the alignment of lipid molecules to form a membrane. However, spatial and angular information are mixed within the image of a fluorescent molecule–the microscope’s dipole-spread function (DSF). We demonstrate the pixOL algorithm to simultaneously optimize all pixels within a phase mask to produce an engineered Green’s tensor–the dipole extension of point-spread function engineering. The pixOL DSF achieves optimal precision to simultaneously measure the 3D orientation and 3D location of a single molecule, i.e., 4.1° orientation, 0.44 sr wobble angle, 23.2 nm lateral localization, and 19.5 nm axial localization precisions in simulations over a 700 nm depth range using 2500 detected photons. The pixOL microscope accurately and precisely resolves the 3D positions and 3D orientations of Nile red within a spherical supported lipid bilayer, resolving both membrane defects and differences in cholesterol concentration in six dimensions. 
    more » « less
  4. Precisely measuring the three-dimensional position and orientation of individual fluorophores is challenging due to the substantial photon shot noise in single-molecule experiments. Facing this limited photon budget, numerous techniques have been developed to encode 2D and 3D position and 2D and 3D orientation information into fluorescence images. In this work, we adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision for measuring the position and orientation of dipole-like emitters for any fixed imaging system. We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions. Further, our vectorial dipole imaging model shows that the best quantum-limited localization precision is 4%–8% worse than that suggested by a scalar monopole model. Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks. 
    more » « less
  5. Various techniques have been developed to measure the 2D and 3D positions and 2D and 3D orientations of fluorescent molecules with improved precision over standard epifluorescence microscopes. Due to the challenging signal-to-background ratio in typical single-molecule experiments, it is essential to choose an imaging system optimized for the specific target sample. In this work, we compare the performance of multiple state-of-the-art and commonly used methods for orientation localization microscopy against the fundamental limits of measurement precision. Our analysis reveals optimal imaging methods for various experiment conditions and sample geometries. Interestingly, simple modifications to the standard fluorescence microscope exhibit superior performance in many imaging scenarios. 
    more » « less
  6. Simultaneous measurements of single-molecule positions and orientations provide critical insight into a variety of biological and chemical processes. Various engineered point spread functions (PSFs) have been introduced for measuring the orientation and rotational diffusion of dipole-like emitters, but the widely used Cramér-Rao bound (CRB) only evaluates performance for one specific orientation at a time. Here, we report a performance metric, termed variance upper bound (VUB), that yields a global maximum CRB for all possible molecular orientations, thereby enabling the measurement performance of any PSF to be computed efficiently ( ∼<#comment/> 1000 ×<#comment/> faster than calculating average CRB). Our VUB reveals that the simple polarized standard PSF provides robust and precise orientation measurements if emitters are near a refractive index interface. Using this PSF, we measure the orientations and positions of Nile red (NR) molecules transiently bound to amyloid aggregates. Our super-resolved images reveal the main binding mode of NR on amyloid fiber surfaces, as well as structural heterogeneities along amyloid fibrillar networks, that cannot be resolved by single-molecule localization alone. 
    more » « less